Skip to main content

Serial Port STDIO

In previous post I covered the basics of configuring and using the Atmega's USART as a standard RS232 port. This post will be more a little addendum to the previous one. In our program of course we can manually send strings using the serial_send/serial_poll_send routines, but we can use the serial port in more convenient and transparent way. If our application implements only some kind of CLI system or basically treats the serial IO as a Serial Console we can configure libc to use our serial IO routines for stdio functions like printf. What we have to do is to create an input output file streams and instruct avr-libc to use those. Let's have a look at the code bellow:

The code refers to the serial IO routines implemented by libpca. First of all _serial_putc/_serial_getc are just a wrappers, interface adapters sort of speak, to adapt our serial IO API to the library's one. In serial_install_stdio() we simply create two file streams, one to be used as STDOUT (and associate the necessary output routine) and one for input. Next we assign our custom streams to the standard library stdio streams utilized all over the stdio library. And that's the whole magic. Those are the internals which can be used as a reference, let's have a look how it can be done with libpca

As usual, let's clone the newest version of the library and create a project directory:

git clone git@github.com:dagon666/avr_Libpca pca
mkdir serial_stdio
cd serial_stdio

Our example program looks as follows:


After connecting to the Arduino's serial port (ttyACM0 in my case), we can see the output produced by printf(). That's great !

screen /dev/ttyACM0 9600

There is a small remark regarding the AVR libc printf routines. Since we're talking about embedded device, the default implementation is very limited (in order to save program space) and does not support floats. When trying to print a float value, we'll see a '?' instead of the number. We can enable the support for the floating point numbers though, by explicitly providing a linker flags (avr libc stdio.h):


-Wl,-u,vfprintf -lprintf_flt -lm

Those must be appended to the LDFLAGS variable in the Makefile. as usual the example code can be downloaded here.

Comments

Popular posts from this blog

RTC without RTC ? How good is my crystal ?

Clock - I think that it's the most popular idea for a project with the MCU . It's not that hard from both software and hardware side to realize but not that trivial as well, not mentioning the fact that once realized it sits somewhere in the house, constantly reminding about itself and brings a kind of satisfaction :). There are a lot of options really to implement, a buzzer alarm, perhaps a thermometer, display and buttons servicing, perhaps maybe even serial port usage for NTP synchronization. But ... The most challenging thing - like in every clock is the time reference source. There are a couple of options: well calibrated frequency source acting as an interrupt source Real Time Clock module with external crystal ( < 20 ppm ) internal clock These days RTC chips are so cheap and widely available that they are really the only reasonable choice, but if we're only planning to play around a bit with the software without paying much attention to accura...

Arduino R-2R ladder Audio DAC

There is a lot of projects out there which use  R-2R ladder and an Arduino to recreate sounds from either SD card or short audio clips programmed directly to MCU's flash memory. Although using SD card is fairly reasonable and provides a lot of flexibility it's not very challenging (from the software point of view) and it requires some additional hardware. Believe it or not we already have all the needed hardware in the Arduino itself. Assumptions In this project I'll play mp3 or any other multimedia files from the PC using Arduino. Bellow are the details: Play PCM 8kHz 8bit Audio with Arduino Audio samples will be transfered via USART from the PC in binary format using SLIP Audio files will be decoded on the PC side and only the RAW data will be send to Arduino Timing Arduino is a powerful machine, powerful enough that it's possible to play audio with even higher sampling rates and bit-resolutions than assumed above, the bottleneck in this...

Simple Serial Port Command Line Interface (CLI)

It's often very useful to have some sort of interface through which a basic management can be done of our application. Whether you're designing a giant Marquee with a LED display or a plotter or you simply need to get some diagnostics from your device occasionally, a simple CLI system can come very handy.  Of course, designing something similar to "bash" or any other unix shell is completely out of scope since those applications are huge and are simply an overkill for our needs. It's pretty simple though to create some basic, yet flexible & easilly extensible CLI system. First thing needed is a command type definition. This will bind a keyword with an actual underlying routine executed for that keyword typed in the CLI . typedef struct _t_cmd { const char *cmd; void (*fh)(void*); } t_cmd; The command type is pretty simple. There's the CLI command/keyword pointer, it holds a pointer to the execution function and that's it. OK, so...