Skip to main content

A(rduino) OS - Simple pre-emptive Arduino Scheduler

A(rduino)OS (AOS) is an attempt to write a simple pre-emptive scheduler - mostly to learn about how such system works but it's a fully functional implementation which can be used in a practical way good as well. First of all, if you have no theoretical background about context switching I would recommend to have a look on a great description regarding schedulers published by avrfreaks:


AOS depends on libpca - it uses some routines from it in order to avoid code duplication. It is completely written in C from scratch with a little of assembler (in order to realize context switching). It comes with a documentation and some examples as well, which is hosted along with the repository on github:


Overview

Most of the pre-emptive schedulers (besides cooperative schedulers) is implements and is driven around a "tick" - an interrupt which happens periodically with a programmed frequency and which is responsible for context switching. In other words, assuming that there are two tasks in the system: taskA and taskB and taskA is currently running, once the tick interrupt happens it will check how much time taskA has already consumed and will switch to taskB if taskA has used all of it's assigned slot.

Context switch reprograms most of the CPU registers and re-positions the stack pointer - which means that every individual task has it's own memory area dedicated for the stack.

I strongly encourage you to give it a try. The doxygen documentation contains a description on how to prepare the project and use the system. In the near future I'm going to try to provide some more practical examples of using this scheduler.

Comments

Popular posts from this blog

Simple Serial Port Command Line Interface (CLI)

It's often very useful to have some sort of interface through which a basic management can be done of our application. Whether you're designing a giant Marquee with a LED display or a plotter or you simply need to get some diagnostics from your device occasionally, a simple CLI system can come very handy.  Of course, designing something similar to "bash" or any other unix shell is completely out of scope since those applications are huge and are simply an overkill for our needs. It's pretty simple though to create some basic, yet flexible & easilly extensible CLI system. First thing needed is a command type definition. This will bind a keyword with an actual underlying routine executed for that keyword typed in the CLI . typedef struct _t_cmd { const char *cmd; void (*fh)(void*); } t_cmd; The command type is pretty simple. There's the CLI command/keyword pointer, it holds a pointer to the execution function and that's it. OK, so...

Arduino R-2R ladder Audio DAC

There is a lot of projects out there which use  R-2R ladder and an Arduino to recreate sounds from either SD card or short audio clips programmed directly to MCU's flash memory. Although using SD card is fairly reasonable and provides a lot of flexibility it's not very challenging (from the software point of view) and it requires some additional hardware. Believe it or not we already have all the needed hardware in the Arduino itself. Assumptions In this project I'll play mp3 or any other multimedia files from the PC using Arduino. Bellow are the details: Play PCM 8kHz 8bit Audio with Arduino Audio samples will be transfered via USART from the PC in binary format using SLIP Audio files will be decoded on the PC side and only the RAW data will be send to Arduino Timing Arduino is a powerful machine, powerful enough that it's possible to play audio with even higher sampling rates and bit-resolutions than assumed above, the bottleneck in this...

Arduino PWM Audio DAC

This post is an addendum to the previous one. To make our lives (as a software developers) even more easier it is possible to recreate a real audio without even having to built the R-2R ladder. Atmega328 comes with a PWM capable timers and they're good enough to produce audio quality analog signal. PWM fundamentals I'm not going to go into details about PWM digital to analog conversion, on this blog I focus on my code and do not intend to cover the theoretical background very thoroughly. Please take some time and familiarize yourself with the PWM theory explained on those sites: Open Music - PWM DAC Open Music - Dual PWM Open Music - Distortion Analysis Open Music - PWM Tutorial In general every PWM DAC can be described by a PWM frequency - f pwm (the frequency of the squarewave generated - which is constant) and the PWM bit resolution - bitres (which describes the granularity with which we can control the duty cycle). All of three Arduino's...